Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cladistics ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728134

RESUMEN

Although simulations have shown that implied weighting (IW) outperforms equal weighting (EW) in phylogenetic parsimony analyses, weighting against homoplasy lacks extensive usage in palaeontology. Iterative modifications of several phylogenetic matrices in the last decades resulted in extensive genealogies of datasets that allow the evaluation of differences in the stability of results for alternative character weighting methods directly on empirical data. Each generation was compared against the most recent generation in each genealogy because it is assumed that it is the most comprehensive (higher sampling), revised (fewer misscorings) and complete (lower amount of missing data) matrix of the genealogy. The analyses were conducted on six different genealogies under EW and IW and extended implied weighting (EIW) with a range of concavity constant values (k) between 3 and 30. Pairwise comparisons between trees were conducted using Robinson-Foulds distances normalized by the total number of groups, distortion coefficient, subtree pruning and regrafting moves, and the proportional sum of group dissimilarities. The results consistently show that IW and EIW produce results more similar to those of the last dataset than EW in the vast majority of genealogies and for all comparative measures. This is significant because almost all of these matrices were originally analysed only under EW. Implied weighting and EIW do not outperform each other unambiguously. Euclidean distances based on a principal components analysis of the comparative measures show that different ranges of k-values retrieve the most similar results to the last generation in different genealogies. There is a significant positive linear correlation between the optimal k-values and the number of terminals of the last generations. This could be employed to inform about the range of k-values to be used in phylogenetic analyses based on matrix size but with the caveat that this emergent relationship still relies on a low sample size of genealogies.

2.
Anat Rec (Hoboken) ; 307(4): 1001-1010, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263641

RESUMEN

Lagerpeton chanarensis is an early avemetatarsalian from the lower Carnian (lowermost Upper Triassic) levels of the Chañares Formation, La Rioja Province, Argentina. Lagerpeton and its kin were traditionally interpreted as dinosaur precursors of cursorial habits, with a bipedal posture and parasagittal gait. Some authors also speculated saltatorial capabilities for this genus. Recent analyses indicate that lagerpetids are early-diverging pterosauromorphs, a hypothesis that invites a review of most aspects of their anatomy and function. A revision of available specimens and additional preparation of previously known individuals indicate that Lagerpeton lacked a parasagittal gait and was probably a sprawling archosaur. This latter inference is based on the femoral head articulation with the acetabulum. The acetabular rim has a strongly laterally projected posteroventral antitrochanteric corner, which results in a position of the legs that recalls that of sprawling living reptiles, such as lizards, and departs from the parasagittally positioned limbs of dinosaurs. This may indicate that early pterosauromorphs had a sprawling posture of their hindlegs, casting doubts on the significance of bipedal posture and parasagittal gait for the radiation of early ornithodirans, given that both traits have been regarded as key features that triggered the ecological and evolutionary success of the clade. Our results bolster recent claims of a high ecomorphological diversity among early avemetatarsalians.


Asunto(s)
Dinosaurios , Lagartos , Animales , Filogenia , Fósiles , Evolución Biológica , Extremidad Inferior/anatomía & histología , Dinosaurios/anatomía & histología , Marcha , Lagartos/anatomía & histología , Postura
3.
Anat Rec (Hoboken) ; 307(4): 1315-1365, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38278769

RESUMEN

Allokotosauria, a clade of non-archosauriform archosauromorphs with a broad diversity of body plans, plays a crucial role in better understanding the evolutionary history of early diverging stem-archosaurs. Here we provide a detailed redescription of Malerisaurus robinsonae, a malerisaurine allokotosaur from the middle Carnian-lowermost Norian lower Maleri Formation, Pranhita-Godavari Basin, India. The new anatomical information available from recently discovered and well-preserved skeletons of various allokotosaurs, such as Azendohsaurus madagaskarensis, Shringasaurus indicus, Puercosuchus traverorum, and Malerisaurus-like taxa, and their comparison with Malerisaurus robinsonae enriches our understanding of the anatomy of this species. To reassess the phylogenetic relationships of Malerisaurus robinsonae, we revised its scorings and included eight additional allokotosaurian species to the already most comprehensive phylogenetic dataset focused on Permo-Triassic archosauromorphs. We modified 70 scorings for Malerisaurus robinsonae and the new analysis recovered this species at the base of Malerisaurinae and this group as the earliest branch of Azendohsauridae. Pamelaria dolichotrachela is found as the earliest diverging non-malerisaurine azendohsaurid and sister taxon to the Shringasaurus indicus + Azendohsaurus spp. clade. Trilophosaurid interrelationships are well resolved, with Teraterpeton hrynewichorum, Coelodontognathus ricovi, and Rutiotomodon tytthos as their successive earliest-branching species. The position of Anisodontosaurus greeri as a sister taxon to Variodens inopinatus bolsters long ghost lineages in the Late Triassic trilophosaurid record. A disparity analysis of tooth crown morphology shows that Allokotosauria is the most disparate Permo-Triassic archosauromorph clade, exploring the almost complete range of basic crown morphologies. Trilophosaurids occupy an area of the dental morphospace unique among archosauromorphs.


Asunto(s)
Evolución Biológica , Fósiles , Filogenia , India
4.
Anat Rec (Hoboken) ; 307(4): 818-850, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282519

RESUMEN

The Chañares Formation (Ischigualasto-Villa Unión Basin) is worldwide known by its exquisitely preserved fossil record of latest Middle-to-early Late Triassic tetrapods, including erpetosuchids, "rauisuchians," proterochampsids, gracilisuchids, dinosauromorphs, pterosauromorphs, kannemeyeriiform dicynodonts, and traversodontid, chiniquodontid and probainognathid cynodonts, coming from the Tarjadia (bottom) and Massetognathus-Chanaresuchus (top) Assemblage Zones of its lower member. Regarding cynodonts, most of its profuse knowledge comes from the traditional layers discovered by Alfred Romer and his team in the 1960s that are now enclosed in the Massetognathus-Chanaresuchus Assemblage Zone (AZ). In this contribution we focus our study on the probainognathian cynodonts discovered in levels of the Tarjadia Assemblage Zone. We describe a new chiniquodontid cynodont with transversely broad postcanine teeth (Riojanodon nenoi gen. et sp. nov.) which is related to the genus Aleodon. In addition, the specimen CRILAR-Pv 567 previously referred to cf. Aleodon is here described, compared, and included in a phylogenetic analysis. It is considered as an indeterminate Aleodontinae nov., a clade here proposed to included chiniquodontids with transversely broad upper and lower postcanines, by having a cuspidated sectorial labial margin and a lingual platform that is twice broader than a lingual cingulum. Cromptodon mamiferoides, from the Cerro de Las Cabras Formation (Cuyo Basin), was also included in the phylogenetic analysis and recovered as an Aleodontinae. The new cynodont and the record of Aleodontinae indet. reinforce the faunal differentiation between the Tarjadia and Massetognathus-Chanaresuchus Assemblage Zones, in the lower member of the Chañares Formation, and inform on the diverse chiniquodontid clade with both sectorial and transversely broad postcanine teeth.


Asunto(s)
Fósiles , Filogenia , Argentina
5.
Anat Rec (Hoboken) ; 307(4): 1093-1112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38088472

RESUMEN

The Gondwana formations exposed in the Pranhita-Godavari Valley of central India include Middle Triassic to Lower Jurassic continental deposits that provide essential information about the tetrapod assemblages of that time, documenting some of the oldest known dinosaurs and the first faunas numerically dominated by this group. The Upper Maleri Formation of the Pranhita-Godavari Basin preserves an early-middle Norian dinosaur assemblage that provides information about the early evolutionary history of this group in central-south Gondwana. This assemblage comprises sauropodomorph dinosaurs and an herrerasaurian, including two nominal species. Here, we describe in detail the anatomy of one of those early dinosaurs, the bagualosaurian sauropodomorph Jaklapallisaurus asymmetricus. The new anatomical information is used to investigate the position of the species in an updated quantitative phylogenetic analysis focused on early sauropodomorphs. The analysis recovered Jaklapallisaurus asymmetricus as a member of Unaysauridae, at the base of Plateosauria, together with Macrocollum itaquii and Unaysaurus tolentinoi from the early Norian of southern Brazil. This phylogenetic result indicates that the dispersal of early plateosaurian sauropodomorphs between the Southern Hemisphere and what nowadays is Europe would have occurred shortly after Ischigualastian times because of the extension of their ghost lineage. Thus, the presence of early plateosaurians in the early Norian of South America and India reduces a previously inferred diachrony between the biogeographic dispersals of theropods and sauropodomorphs during post-Ischigualastian times.


Asunto(s)
Dinosaurios , Animales , Filogenia , Dinosaurios/anatomía & histología , Osteología , Fósiles , Evolución Biológica , Brasil
6.
Anat Rec (Hoboken) ; 307(4): 851-889, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37589539

RESUMEN

Proterochampsidae is a clade of non-archosaurian archosauriforms restricted to the Middle to the Late Triassic of the Ischigualasto-Villa Unión Basin of Argentina and the Santa Maria Supersequence of Brazil. A reappraisal of proterochampsid specimens from the Brazilian Dinodontosaurus Assemblage Zone (AZ) of the Pinheiros-Chiniquá Sequence (late Ladinian-early Carnian) is presented here. One of the specimens was preliminary assigned to Chanaresuchus sp., whose type species comes from the Massetognathus-Chanaresuchus AZ of the Chañares Formation of Argentina. However, our revision indicates that it differs from Chanaresuchus, being more closely related to the middle-late Carnian Rhadinosuchus gracilis. We therefore propose the new taxon, Pinheirochampsa rodriguesi, to reallocate this specimen. Additionally, we present a revision of other putative Chanaresuchus occurrences in Brazil, including the only known specimen described for the Santacruzodon AZ (Santa Cruz do Sul Sequence; early Carnian), also proposing it as a new taxon: Kuruxuchampsa dornellesi. Both new species are characterized, among other features, by transverse expansion of the anterior end of the rostrum, similar to the condition present in Rhadinosuchus, but absent in Chanaresuchus, Gualosuchus, Pseudochampsa, and non-rhadinosuchine proterochampsids. These two new species expand the growing knowledge of the non-archosaurian archosauriform diversity during the Middle-Late Triassic in South America and enhance faunal and chronological comparisons between approximately coeval geological units between Argentina and Brazil.


Asunto(s)
Dinosaurios , Diente , Animales , Brasil , Fósiles , Argentina , Filogenia , Dinosaurios/anatomía & histología
7.
Anat Rec (Hoboken) ; 307(4): 1147-1174, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37794742

RESUMEN

The anatomy of the braincase and associated soft tissues of the lagerpetid Dromomeron gregorii (Archosauria: Avemetatarsalia) from the Late Triassic of the United States is here described. This corresponds to the first detailed description of cranial materials of Lagerpetidae, an enigmatic group of Late Triassic (c. 236-200 Million years ago) animals that are the closest known relatives of pterosaurs, the flying reptiles. The braincase of D. gregorii is characterized by the presence of an anteriorly elongated laterosphenoid and a postparietal, features observed in stem-archosaurs but that were still unknown in early members of the avian lineage of archosaurs. Using micro-computed tomography (CT-scan data), we present digital reconstructions of the brain and endosseous labyrinth of D. gregorii. The brain of D. gregorii exhibits a floccular lobe of the cerebellum that projects within the space of the semicircular canals. The semicircular canals are relatively large when compared to other archosauromorphs, with the anterior canal exhibiting a circular shape. These features of the sensory structures of D. gregorii are more similar to those of pterosaurs than to those of other early avemetatarsalians. In sum, the braincase anatomy of D. gregorii shows a combination of plesiomorphic and apomorphic features in the phylogenetic context of Archosauria and suggests that the still poorly understood early evolution of the braincase in avemetatarsalians is complex, with a scenario of independent acquisitions and losses of character states.


Asunto(s)
Dinosaurios , Fósiles , Animales , Filogenia , Neuroanatomía , Microtomografía por Rayos X , Cráneo/anatomía & histología , Canales Semicirculares , Evolución Biológica , Dinosaurios/anatomía & histología
8.
Sci Rep ; 13(1): 16969, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37807006

RESUMEN

Variations in the shape and size of teeth have been associated with changes in enamel ultrastructure across odontocetes. Characterizing these features in extinct taxa can elucidate their functional morphology and feeding strategy, while also shedding light into macroevolutionary patterns during the evolutionary history of cetaceans. This study aimed to (1) describe the enamel and dentine ultrastructure of the Early Miocene odontocetes Notocetus vanbenedeni and Phoberodon arctirostris from Patagonia (Argentina) and (2) quantify tooth and enamel ultrastructure morphological disparity among odontocetes. Enamel was predominantly prismatic, thin in the anterior tooth of N. vanbenedeni and P. arctirostris; whilst thick on the posterior tooth of N. vanbenedeni. Together with skull morphology, data suggests a raptorial feeding strategy for P. arctirostris and a combination suction feeding method for N. vanbenedeni. Statistical analyses supported these inferences, indicating that enamel characters are useful for paleoecological research. Morphological disparity analyses showed that extant odontocetes occupy a larger morphospace and have more disparate morphologies, whilst extinct odontocetes were more similar among each other than with the extant group. There was no clear phylogenetic-based grouping, suggesting that tooth and enamel ultrastructure disparity were mainly driven by ecological pressures. These results highlight enamel ultrastructure as a source for broader-scale paleoecological studies in cetaceans.


Asunto(s)
Evolución Biológica , Diente , Animales , Filogenia , Cetáceos/anatomía & histología , Esmalte Dental , Fósiles
9.
R Soc Open Sci ; 10(10): 230387, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37885992

RESUMEN

Proterosuchidae represents the oldest substantial diversification of Archosauromorpha and plays a key role in understanding the biotic recovery after the end-Permian mass extinction. Proterosuchidae was long treated as a wastebasket taxon, but recent revisions have reduced its taxonomic content to five valid species from the latest Permian of Russia and the earliest Triassic (Induan) of South Africa and China. In addition to these occurrences, several isolated proterosuchid bones have been reported from the Induan Panchet Formation of India for over 150 years. Following the re-study of historical specimens and newly collected material from this unit, we erect the new proterosuchid species Samsarasuchus pamelae, which is represented by most of the presacral vertebral column. We also describe cf. proterosuchid and proterosuchid cranial, girdle and limb bones that are not referred to Samsarasuchus pamelae. Phylogenetic analyses recovered Samsarasuchus pamelae within the new proterosuchid clade Chasmatosuchinae. The taxonomic diversity of Proterosuchidae is substantially expanded here, with at least 11 nominal species and several currently unnamed specimens, and a biogeographical range encompassing present-day South Africa, China, Russia, India, Brazil, Uruguay and Australia. This indicates a broader taxonomic, phylogenetic and biogeographic diversification of Proterosuchidae than previously thought in the aftermath of the end-Permian mass extinction.

10.
Nature ; 620(7974): 589-594, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587301

RESUMEN

Dinosaurs and pterosaurs have remarkable diversity and disparity through most of the Mesozoic Era1-3. Soon after their origins, these reptiles diversified into a number of long-lived lineages, evolved unprecedented ecologies (for example, flying, large herbivorous forms) and spread across Pangaea4,5. Recent discoveries of dinosaur and pterosaur precursors6-10 demonstrated that these animals were also speciose and widespread, but those precursors have few if any well-preserved skulls, hands and associated skeletons11,12. Here we present a well-preserved partial skeleton (Upper Triassic, Brazil) of the new lagerpetid Venetoraptor gassenae gen. et sp. nov. that offers a more comprehensive look into the skull and ecology of one of these precursors. Its skull has a sharp, raptorial-like beak, preceding that of dinosaurs by around 80 million years, and a large hand with long, trenchant claws that firmly establishes the loss of obligatory quadrupedalism in these precursor lineages. Combining anatomical information of the new species with other dinosaur and pterosaur precursors shows that morphological disparity of precursors resembles that of Triassic pterosaurs and exceeds that of Triassic dinosaurs. Thus, the 'success' of pterosaurs and dinosaurs was a result of differential survival among a broader pool of ecomorphological variation. Our results show that the morphological diversity of ornithodirans started to flourish among early-diverging lineages and not only after the origins of dinosaurs and pterosaurs.


Asunto(s)
Dinosaurios , Filogenia , Reptiles , Animales , Pico/anatomía & histología , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Reptiles/anatomía & histología , Reptiles/clasificación , Cráneo/anatomía & histología , Fósiles , Esqueleto
11.
Anat Rec (Hoboken) ; 305(5): 1168-1200, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34496139

RESUMEN

Rhynchosaurs are bulky quadrupedal herbivores that achieved a cosmopolitan distribution during the Middle and Late Triassic. Rhynchosaurids are characterized by a pair of premaxillae modified into an edentulous beak that had a bone-to-bone occlusion with the tips of the dentaries, and a specialized masticatory apparatus composed of groove(s) on the maxilla and ridges(s) on the dentary. The Argentinian fossil record of rhynchosaurs is abundant, but only two nominal species have been named so far. One of them, the hyperodapedontine Hyperodapedon sanjuanensis, is the most abundant tetrapod of the Ischigualasto Formation of northwestern Argentina. However, the anatomy of H. sanjuanensis remains poorly studied. The repreparation and computed tomographic (CT) scanning of its holotypic skull (MACN-Pv 18185) allowed a detailed description of its anatomy. Among the novel anatomical data presented here, we provide the first tridimensional complete reconstruction of a rhynchosaurid palate. This structure is extremely complex in comparison to the plesiomorphic archosauromorph condition, and more data on other rhynchosaurid palates are needed to shed light on the sequence of character states acquisition that resulted in this peculiar anatomy. The presence of a pair of septomaxillae in H. sanjuanensis is the first report of these bones in a rhynchosaurid, and this new information allowed to identify septomaxillae also in the hyperodapedontines Teyumbaita sulcognathus and Hyperodapedon mariensis. The better understanding of the skull anatomy of the holotype of H. sanjuanensis is a first step towards an improved knowledge of the morphology and taxonomy of the South American rhynchosaurs.


Asunto(s)
Dinosaurios , Animales , Argentina , Dinosaurios/anatomía & histología , Fósiles , Osteología , Filogenia , Cráneo/anatomía & histología
12.
Anat Rec (Hoboken) ; 305(5): 1119-1146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358415

RESUMEN

Lewisuchus admixtus is an early dinosauriform described by Alfred Romer in 1972 on the basis of a single, incomplete skeleton, collected in lower Upper Triassic rocks of the renowned Chañares Formation, at the Los Chañares type-locality, La Rioja Province, north-western Argentina. Recent field explorations to the type-locality resulted in the discovery of two partial articulated skeletons, which provide significant novel information. The cranial bones, presacral series, femur, tibia, and proximal tarsals of the new specimens match the preserved overlapping anatomy of the holotype and previously referred specimens of L. admixtus, including the presence of unique combination of character states among dinosauriforms (anterior presacral column with additional ossification on the top of neural spines, dorsal neural spines fan-shaped, anterior surface of the astragalus with a dorsally curved groove, and an inflated area on the anterior portion of the medial surface of this bone). This new information improves our understanding of the anatomy and taxonomy of early dinosauriforms and reinforces the role of Argentinean beds on the study of the origin of dinosaurs.


Asunto(s)
Dinosaurios , Fósiles , Animales , Argentina , Evolución Biológica , Dinosaurios/anatomía & histología , Filogenia , Cráneo/anatomía & histología
13.
Sci Rep ; 11(1): 22534, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795322

RESUMEN

Sauropodomorph dinosaurs were the dominant medium to large-sized herbivores of most Mesozoic continental ecosystems, being characterized by their long necks and reaching a size unparalleled by other terrestrial animals (> 60 tonnes). Our study of morphological disparity across the entire skeleton shows that during the Late Triassic the oldest known sauropodomorphs occupied a small region of morphospace, subsequently diversifying both taxonomically and ecologically, and shifting to a different and broader region of the morphospace. After the Triassic-Jurassic boundary event, there are no substancial changes in sauropodomorph morphospace occupation. Almost all Jurassic sauropodomorph clades stem from ghost lineages that cross the Triassic-Jurassic boundary, indicating that variations after the extinction were more related to changes of pre-existing lineages (massospondylids, non-gravisaurian sauropodiforms) rather than the emergence of distinct clades or body plans. Modifications in the locomotion (bipedal to quadrupedal) and the successive increase in body mass seem to be the main attributes driving sauropodomorph morphospace distribution during the Late Triassic and earliest Jurassic. The extinction of all non-sauropod sauropodomorphs by the Toarcian and the subsequent diversification of gravisaurian sauropods represent a second expansion of the sauropodomorph morphospace, representing the onset of the flourishing of these megaherbivores that subsequently dominated in Middle and Late Jurassic terrestrial assemblages.


Asunto(s)
Tamaño Corporal , Dinosaurios/anatomía & histología , Dinosaurios/crecimiento & desarrollo , Extinción Biológica , Fósiles , Animales , Evolución Biológica , Calibración , Ecología , Ecosistema , Locomoción , Paleontología , Filogenia , Análisis de Regresión
14.
R Soc Open Sci ; 8(10): 210915, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34754500

RESUMEN

We describe a new small-bodied coelophysoid theropod dinosaur, Pendraig milnerae gen. et sp. nov, from the Late Triassic fissure fill deposits of Pant-y-ffynnon in southern Wales. The species is represented by the holotype, consisting of an articulated pelvic girdle, sacrum and posterior dorsal vertebrae, and an associated left femur, and by two referred specimens, comprising an isolated dorsal vertebra and a partial left ischium. Our phylogenetic analysis recovers P. milnerae as a non-coelophysid coelophysoid theropod, representing the first-named unambiguous theropod from the Triassic of the UK. Recently, it has been suggested that Pant-y-ffynnon and other nearby Late Triassic to Early Jurassic fissure fill faunas might have been subjected to insular dwarfism. To test this hypothesis for P. milnerae, we performed an ancestral state reconstruction analysis of body size in early neotheropods. Although our results indicate that a reduced body size is autapomorphic for P. milnerae, some other coelophysoid taxa show a similar size reduction, and there is, therefore, ambiguous evidence to indicate that this species was subjected to dwarfism. Our analyses further indicate that, in contrast with averostran-line neotheropods, which increased in body size during the Triassic, coelophysoids underwent a small body size decrease early in their evolution.

15.
Curr Biol ; 31(12): 2520-2529.e6, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33930303

RESUMEN

Living archosaurs (birds and crocodylians) have disparate locomotor strategies that evolved since their divergence ∼250 mya. Little is known about the early evolution of the sensory structures that are coupled with these changes, mostly due to limited sampling of early fossils on key stem lineages. In particular, the morphology of the semicircular canals (SCCs) of the endosseous labyrinth has a long-hypothesized relationship with locomotion. Here, we analyze SCC shapes and sizes of living and extinct archosaurs encompassing diverse locomotor habits, including bipedal, semi-aquatic, and flying taxa. We test form-function hypotheses of the SCCs and chronicle their evolution during deep archosaurian divergences. We find that SCC shape is statistically associated with both flight and bipedalism. However, this shape variation is small and is more likely explained by changes in braincase geometry than by locomotor changes. We demonstrate high disparity of both shape and size among stem-archosaurs and a deep divergence of SCC morphologies at the bird-crocodylian split. Stem-crocodylians exhibit diverse morphologies, including aspects also present in birds and distinct from other reptiles. Therefore, extant crocodylian SCC morphologies do not reflect retention of a "primitive" reptilian condition. Key aspects of bird SCC morphology that hitherto were interpreted as flight related, including large SCC size and enhanced sensitivity, appeared early on the bird stem-lineage in non-flying dinosaur precursors. Taken together, our results indicate a deep divergence of SCC traits at the bird-crocodylian split and that living archosaurs evolved from an early radiation with high sensory diversity. VIDEO ABSTRACT.


Asunto(s)
Evolución Biológica , Aves/anatomía & histología , Dinosaurios/anatomía & histología , Extinción Biológica , Canales Semicirculares/anatomía & histología , Animales , Fósiles , Filogenia , Reptiles/anatomía & histología
16.
Nature ; 588(7838): 445-449, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33299179

RESUMEN

Pterosaurs were the first vertebrates to evolve powered flight1 and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century2-4. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives2-8, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton. This finding substantially shortens the temporal and morphological gap between the oldest pterosaurs and their closest relatives and simultaneously strengthens the evidence that pterosaurs belong to the avian line of archosaurs. Neuroanatomical features related to the enhanced sensory abilities of pterosaurs9 are already present in lagerpetids, which indicates that these features evolved before flight. Our evidence illuminates the first steps of the assembly of the pterosaur body plan, whose conquest of aerial space represents a remarkable morphofunctional innovation in vertebrate evolution.


Asunto(s)
Huesos/anatomía & histología , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Fósiles , Filogenia , Animales , Calibración , Cráneo/anatomía & histología , Factores de Tiempo , Alas de Animales/anatomía & histología , Microtomografía por Rayos X
17.
Sci Rep ; 10(1): 12782, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728077

RESUMEN

Present knowledge of Late Triassic tetrapod evolution, including the rise of dinosaurs, relies heavily on the fossil-rich continental deposits of South America, their precise depositional histories and correlations. We report on an extended succession of the Ischigualasto Formation exposed in the Hoyada del Cerro Las Lajas (La Rioja, Argentina), where more than 100 tetrapod fossils were newly collected, augmented by historical finds such as the ornithosuchid Venaticosuchus rusconii and the putative ornithischian Pisanosaurus mertii. Detailed lithostratigraphy combined with high-precision U-Pb geochronology from three intercalated tuffs are used to construct a robust Bayesian age model for the formation, constraining its deposition between 230.2 ± 1.9 Ma and 221.4 ± 1.2 Ma, and its fossil-bearing interval to 229.20 + 0.11/- 0.15-226.85 + 1.45/- 2.01 Ma. The latter is divided into a lower Hyperodapedon and an upper Teyumbaita biozones, based on the ranges of the eponymous rhynchosaurs, allowing biostratigraphic correlations to elsewhere in the Ischigualasto-Villa Unión Basin, as well as to the Paraná Basin in Brazil. The temporally calibrated Ischigualasto biostratigraphy suggests the persistence of rhynchosaur-dominated faunas into the earliest Norian. Our ca. 229 Ma age assignment to Pi. mertii partially fills the ghost lineage between younger ornithischian records and the oldest known saurischians at ca. 233 Ma.

18.
R Soc Open Sci ; 7(3): 192179, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32269817

RESUMEN

Correctly identifying taxa at the root of major clades or the oldest clade-representatives is critical for meaningful interpretations of evolution. A small, partially crushed skull from the Late Triassic (Norian) of Connecticut, USA, originally described as an indeterminate rhynchocephalian saurian, was recently named Colobops noviportensis and reinterpreted as sister to all remaining Rhynchosauria, one of the earliest and globally distributed groups of herbivorous reptiles. It was also interpreted as having an exceptionally reinforced snout and powerful bite based on an especially large supratemporal fenestra. Here, after a re-analysis of the original scan data, we show that the skull was strongly dorsoventrally compressed post-mortem, with most bones out of life position. The cranial anatomy is consistent with that of other rhynchocephalian lepidosauromorphs, not rhynchosaurs. The 'reinforced snout' region and the 'exceptionally enlarged temporal region' are preservational artefacts and not exceptional among clevosaurid rhynchocephalians. Colobops is thus not a key taxon for understanding diapsid feeding apparatus evolution.

19.
Sci Rep ; 10(1): 5150, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198441

RESUMEN

The homology and evolution of the archosaur ankle is a controversial topic that has been deeply studied using evidence from both extinct and extant taxa. In early stem archosaurs, the astragalus and calcaneum form the ancestral proximal tarsus and a single ossification composes the centrale series. In more recent stem archosaurs, the centrale is incorporated to the proximal row of tarsals laterally contacting the astragalus. This bone is subsequently lost as an independent ossification before the last common ancestor of birds and crocodilians, but the evolutionary fate of this element remains mostly unexplored. Here, we integrate embryological and palaeontological data with morphogeometric analyses to test the hypothesis of loss of the centrale or, alternatively, its incorporation into the archosaurian astragalus. Our results support the latter hypothesis, indicating that the astragalus developed ancestrally from two ossification centres in stem archosaurs and that the supposed tibiale of bird embryos represents a centrale. This conclusion agrees with previous embryological studies that concluded that the tibiale never develops in diapsids.


Asunto(s)
Articulación del Tobillo/anatomía & histología , Tobillo/anatomía & histología , Fósiles/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Animales , Evolución Biológica , Aves/anatomía & histología , Huesos/anatomía & histología , Dinosaurios/anatomía & histología , Paleontología/métodos , Filogenia , Astrágalo/anatomía & histología
20.
R Soc Open Sci ; 7(12): 201089, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33489266

RESUMEN

Erythrosuchidae were large-bodied, quadrupedal, predatory archosauriforms that dominated the hypercarnivorous niche in the aftermath of the Permo-Triassic mass extinction. Garjainia, one of the oldest members of the clade, is known from the late Olenekian of European Russia. The holotype of Garjainia prima comprises a well-preserved skull, but highly incomplete postcranium. Recent taxonomic reappraisal demonstrates that material from a bone bed found close to the type locality, previously referred to as 'Vjushkovia triplicostata', is referable to G. prima. At least, seven individuals comprising cranial remains and virtually the entire postcranium are represented, and we describe this material in detail for the first time. An updated phylogenetic analysis confirms previous results that a monophyletic Garjainia is the sister taxon to a clade containing Erythrosuchus, Shansisuchus and Chalishevia. Muscle scars on many limb elements are clear, allowing reconstruction of the proximal locomotor musculature. We calculate the body mass of G. prima to have been 147-248 kg, similar to that of an adult male lion. Large body size in erythrosuchids may have been attained as part of a trend of increasing body size after the Permo-Triassic mass extinction and allowed erythrosuchids to become the dominant carnivores of the Early and Middle Triassic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...